Copied to
clipboard

G = C22×C22⋊C8order 128 = 27

Direct product of C22 and C22⋊C8

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C22×C22⋊C8, C244C8, C25.7C4, C23.38M4(2), C236(C2×C8), (C23×C8)⋊3C2, (C2×C8)⋊12C23, (C24×C4).7C2, C2.1(C23×C8), (C23×C4).34C4, C222(C22×C8), C24.124(C2×C4), (C2×C4).626C24, (C22×C8)⋊60C22, C4.175(C22×D4), (C22×C4).818D4, C22.37(C23×C4), C2.3(C22×M4(2)), (C23×C4).656C22, C23.218(C22×C4), C22.59(C2×M4(2)), C23.229(C22⋊C4), (C22×C4).1269C23, C4(C2×C22⋊C8), (C2×C4)2(C22⋊C8), (C2×C4).1561(C2×D4), C4.119(C2×C22⋊C4), (C22×C4)(C22⋊C8), C2.3(C22×C22⋊C4), (C22×C4).456(C2×C4), (C2×C4).624(C22×C4), (C2×C4).403(C22⋊C4), C22.134(C2×C22⋊C4), (C2×C4)2(C2×C22⋊C8), (C22×C4)(C2×C22⋊C8), SmallGroup(128,1608)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C22×C22⋊C8
C1C2C4C2×C4C22×C4C23×C4C24×C4 — C22×C22⋊C8
C1C2 — C22×C22⋊C8
C1C23×C4 — C22×C22⋊C8
C1C2C2C2×C4 — C22×C22⋊C8

Generators and relations for C22×C22⋊C8
 G = < a,b,c,d,e | a2=b2=c2=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >

Subgroups: 812 in 536 conjugacy classes, 260 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C2×C8, C2×C8, C22×C4, C22×C4, C24, C24, C24, C22⋊C8, C22×C8, C22×C8, C23×C4, C23×C4, C23×C4, C25, C2×C22⋊C8, C23×C8, C24×C4, C22×C22⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C24, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C23×C4, C22×D4, C2×C22⋊C8, C22×C22⋊C4, C23×C8, C22×M4(2), C22×C22⋊C8

Smallest permutation representation of C22×C22⋊C8
On 64 points
Generators in S64
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 47)(18 48)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)(33 51)(34 52)(35 53)(36 54)(37 55)(38 56)(39 49)(40 50)
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)
(1 17)(2 56)(3 19)(4 50)(5 21)(6 52)(7 23)(8 54)(9 45)(10 36)(11 47)(12 38)(13 41)(14 40)(15 43)(16 34)(18 64)(20 58)(22 60)(24 62)(25 44)(26 35)(27 46)(28 37)(29 48)(30 39)(31 42)(32 33)(49 57)(51 59)(53 61)(55 63)
(1 63)(2 64)(3 57)(4 58)(5 59)(6 60)(7 61)(8 62)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 55)(18 56)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,47)(18,48)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (1,17)(2,56)(3,19)(4,50)(5,21)(6,52)(7,23)(8,54)(9,45)(10,36)(11,47)(12,38)(13,41)(14,40)(15,43)(16,34)(18,64)(20,58)(22,60)(24,62)(25,44)(26,35)(27,46)(28,37)(29,48)(30,39)(31,42)(32,33)(49,57)(51,59)(53,61)(55,63), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,47)(18,48)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,51)(34,52)(35,53)(36,54)(37,55)(38,56)(39,49)(40,50), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60), (1,17)(2,56)(3,19)(4,50)(5,21)(6,52)(7,23)(8,54)(9,45)(10,36)(11,47)(12,38)(13,41)(14,40)(15,43)(16,34)(18,64)(20,58)(22,60)(24,62)(25,44)(26,35)(27,46)(28,37)(29,48)(30,39)(31,42)(32,33)(49,57)(51,59)(53,61)(55,63), (1,63)(2,64)(3,57)(4,58)(5,59)(6,60)(7,61)(8,62)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,55)(18,56)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,47),(18,48),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59),(33,51),(34,52),(35,53),(36,54),(37,55),(38,56),(39,49),(40,50)], [(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60)], [(1,17),(2,56),(3,19),(4,50),(5,21),(6,52),(7,23),(8,54),(9,45),(10,36),(11,47),(12,38),(13,41),(14,40),(15,43),(16,34),(18,64),(20,58),(22,60),(24,62),(25,44),(26,35),(27,46),(28,37),(29,48),(30,39),(31,42),(32,33),(49,57),(51,59),(53,61),(55,63)], [(1,63),(2,64),(3,57),(4,58),(5,59),(6,60),(7,61),(8,62),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,55),(18,56),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

80 conjugacy classes

class 1 2A···2O2P···2W4A···4P4Q···4X8A···8AF
order12···22···24···44···48···8
size11···12···21···12···22···2

80 irreducible representations

dim111111122
type+++++
imageC1C2C2C2C4C4C8D4M4(2)
kernelC22×C22⋊C8C2×C22⋊C8C23×C8C24×C4C23×C4C25C24C22×C4C23
# reps112211423288

Matrix representation of C22×C22⋊C8 in GL5(𝔽17)

160000
016000
001600
00010
00001
,
160000
01000
001600
00010
00001
,
10000
01000
001600
00010
000016
,
10000
01000
00100
000160
000016
,
160000
08000
00800
000016
000160

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,0,16,0,0,0,16,0] >;

C22×C22⋊C8 in GAP, Magma, Sage, TeX

C_2^2\times C_2^2\rtimes C_8
% in TeX

G:=Group("C2^2xC2^2:C8");
// GroupNames label

G:=SmallGroup(128,1608);
// by ID

G=gap.SmallGroup(128,1608);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽